## Neural Network and Deep Learning

Md Shad Akhtar Research Scholar IIT Patna

#### Neural Network

- Mimics the functionality of a brain.
- A neural network is a graph with neurons (nodes, units etc.) connected by links.



#### **Neural Network: Neuron**



#### Neural Network: Perceptron

- Network with only single layer.
- No hidden layers

Single Layer Perceptron



#### Neural Network: Perceptron



#### Neural Network: Perceptron



Neural Network: Multi Layer Perceptron (MLP) or Feed-Forward Network (FNN)

- Network with *n*+1 layers
- One output and *n* hidden layers.
- Typically *n* = 1



• Gradient decent algorithm











- 1. Initialize network with random weights
- 2. For all training cases (called examples):
  - a. Present training inputs to network and calculate output
  - b. For <u>all layers</u> (starting with output layer, back to input layer):
    - i. Compare network output with correct output (error function)
    - ii. Adapt weights in current layer

### **Deep Learning**

#### What is Deep Learning?

• A family of methods that uses deep architectures to learn high-level feature representations



#### Example 1





#### Example 2

very high level representation:



#### Why are Deep Architectures hard to train?

- Vanishing gradient problem in Back Propagation
- $\frac{\partial Loss}{\partial w_{ij}} = \frac{\partial Loss}{\partial in_j} \frac{\partial in_j}{\partial w_{ij}} = \delta_j x_i$ •  $\delta_j = \left[ \sum_{j+1} \delta_{j+1} w_{j(j+1)} \right] \sigma'(in_j)$
- δ<sub>j</sub> may vanish after repeated multiplication



#### Layer-wise Pre-training

 First, train one layer at a time, optimizing data-likelihood objective P(x)



#### Layer-wise Pre-training

 Then, train second layer next, optimizing data-likelihood objective P(h)



#### Layer-wise Pre-training

• Finally, fine-tune labelled objective P(y|x) by Backpropagation



#### **Deep Belief Nets**

- Uses Restricted Boltzmann Machines (RBMs)
- Hinton et al. (2006), A fast learning algorithm for deep belief nets.

#### Restricted Boltzmann Machine (RBM)

• RBM is a simple energy-based model:

$$p(x,h) = \frac{1}{Z_{\theta}} \exp\left(-E_{\theta}(x,h)\right)$$

where

$$E_{\theta}(x,h) = -x^{T}Wh - b^{T}x - d^{T}h$$
$$Z_{\theta} = \sum_{(x,h)} \exp(-E_{\theta}(x,h))$$

Example:

• Let weights  $(h_1; x_1)$ ,  $(h_1; x_3)$  be positive, others be zero, b = d = 0.

• Calculate *p*(*x*,*h*) ?



#### **Restricted Boltzmann Machine (RBM)**

- P(x, h) = P(h|x) P(x)
- *P*(*h*|*x*): easy to compute
- P(x): hard if datasets are larg



#### Contrastive Divergence:

Let x<sup>(m)</sup> be training point, W = [w<sub>ij</sub>] be current model weights
 Sample ĥ<sub>j</sub> ∈ {0,1} from p(h<sub>j</sub>|x = x<sup>(m)</sup>) = σ(∑<sub>i</sub> w<sub>ij</sub>x<sub>i</sub><sup>(m)</sup> + d<sub>j</sub>) ∀j.
 Sample x̃<sub>i</sub> ∈ {0,1} from p(x<sub>i</sub>|h = ĥ) = σ(∑<sub>j</sub> w<sub>ij</sub> ĥ<sub>j</sub> + b<sub>i</sub>) ∀i.
 Sample h̃<sub>j</sub> ∈ {0,1} from p(h<sub>j</sub>|x = x̃) = σ(∑<sub>i</sub> w<sub>ij</sub> x̃<sub>i</sub> + d<sub>j</sub>) ∀j.
 w<sub>ij</sub> ← w<sub>ij</sub> + γ(x<sub>i</sub><sup>(m)</sup> · ĥ<sub>j</sub> - x̃<sub>i</sub> · h̃<sub>j</sub>)

#### Deep Belief Nets (DBN) = Stacked RBM



# Auto-Encoders: Simpler alternative to RBMs



Decoder:  $x' = \sigma(W'h + d)$ 

Encoder:  $h = \sigma(Wx + b)$ 

### Deep Learning - Architecture

- Recurrent Neural Network (RNN)
- Convolution Neural Network (CNN)

#### Recurrent Neural Network (RNN)

### Recurrent Neural Network (RNN)

 Enable networks to do temporal processing and learn sequences



 $egin{array}{rcl} egin{array}{rcl} egin{arra$ 

#### **Character level language model**



#### Training of RNN: BPTT



$$\hat{y}_t$$
: Predicted

 $y_t$  : Actual

$$\frac{\partial E}{\partial W} = \sum_{t} \frac{\partial E_t}{\partial W}$$

 $\begin{aligned} \frac{\partial E_3}{\partial V} &= \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial V} \\ &= \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial z_3} \frac{\partial z_3}{\partial V} \\ &= (\hat{y}_3 - y_3) \otimes s_3 \end{aligned}$ 

$$\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial W}$$
$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^3 \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial s_k} \frac{\partial s_k}{\partial W}$$

#### Training of RNN: BPTT



 $\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial W} \qquad \qquad \frac{\partial E_3}{\partial W} = \sum_{k=0}^3 \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial s_k} \frac{\partial s_k}{\partial W}$ 



#### One to many:

Sequence output (e.g. image captioning takes an image and outputs a sentence of words)

#### Many to one:

Sequence input (e.g. sentiment analysis where a given sentence is classified as expressing positive or negative sentiment)

#### Many to many:

Sequence input and sequence output (e.g. Machine Translation: an RNN reads a sentence in English and then outputs a sentence in French)

#### Many to many:

Synced sequence input and output (e.g. Language modelling where we wish to predict next words.

### **RNN** Extension

- Bidirectional RNN
- Deep (Bidirectional) RNNs





### RNN (Cont..)

• "the clouds are in the *sky*"



### RNN (Cont..)

• "India is my home country. I can speak fluent *Hindi*."



#### Ideally: It should

Practically: It is very hard for RNN to learn "Long Term Dependency".

• Capable of learning long-term dependencies.



- LSTM remove or add information to the cell state, carefully regulated by structures called gates.
- Cell state: Conveyer belt of the cell



- Gates
  - Forget Gate
  - Input Gate
  - Output Gate



$$f_t = \sigma \left( W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

- Gates
  - Forget Gate
  - Input Gate
  - Output Gate



$$i_t = \sigma \left( W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Gates
  - Forget Gate
  - Input Gate
  - Output Gate



 $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$ 

- Gates
  - Forget Gate
  - Input Gate
  - Output Gate



$$o_t = \sigma \left( W_o \left[ h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh(C_t)$$

LSTM- Variants



$$\begin{aligned} z_t &= \sigma \left( W_z \cdot [h_{t-1}, x_t] \right) \\ r_t &= \sigma \left( W_r \cdot [h_{t-1}, x_t] \right) \\ \tilde{h}_t &= \tanh \left( W \cdot [r_t * h_{t-1}, x_t] \right) \\ h_t &= (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t \end{aligned}$$



$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

- A special kind of multi-layer neural networks.
- Implicitly extract relevant features.
- Fully-connected network architecture does not take into account the spatial structure.
- In contrast, CNN tries to take advantage of the s patial structure.

- 1. Convolutional layer
- 2. Pooling layer
- 3. Fully connected layer



1. Convolutional layer





**Convolution Filter** 

Image

1. Convolutional layer





Image

Convolved Feature

4

- 1. Convolutional layer
  - Local receptive field
  - Shared weights







| 1 | 0 | 1 |
|---|---|---|
| 0 | 1 | 0 |
| 1 | 0 | 1 |



2. Pooling layer



3. Fully connected layer



Putting it all together



### References

- <u>http://www.wildml.com/2015/09/recurrent-</u> <u>neural-networks-tutorial-part-1-introduction-</u> <u>to-rnns/</u>
- <u>http://karpathy.github.io/2015/05/21/rnn-</u> <u>effectiveness/</u>
- <u>http://colah.github.io/posts/2015-08-</u>
  <u>Understanding-LSTMs/</u>
- <u>http://cl.naist.jp/~kevinduh/a/deep2014/</u>